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1 1 Throughout in this paper, we discuss corrosion systems specifically, and therefore mention polarization instead of overvoltage and corrosion current instead of exchange curren
statements are valid, of course, for all electrochemical systems that obey the Butler-Volmer equation.
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The determination of the parameters of the Butler-Volmer equation is a typical nonlinear parameter fitting task.
Linear approximations are feasible at high and very low polarizations. However, in both cases the intermediate
(transition) potential range, carrying probably the most valuable information on the exchange or corrosion cur-
rent of an electrochemical system, remains out of scope. The linearization of the Butler-Volmer equation in this
intermediate potential range, enabling the determination of both the polarization resistance and the Tafel
slopes, can provide a powerful evaluation tool in electrochemical kinetic studies. A simple, robust and accurate
method to meet this challenge is proposed, linear in the Tafel slopes and quadratic in the polarization, provid-
ing all practical advantages of the linearized systems. The performance of the new model is tested on simulated
and experimental data.
1. Introduction

The Butler-Volmer equation is the most basic equation of electro-
chemical kinetics, establishing the relation between the current den-
sity and polarization [1–6]. In corrosion studies it is generally
applied in a rather empirical form given by Eq. (1):

j ¼ jcorr exp
η

ba
� exp

�η

bc

� �
: ð1Þ

Here ba and bc are the so-called anodic and cathodic Tafel constants or
Tafel slopes, jcorr is the corrosion current and η denotes the polarization,
i.e., the difference between the actual electrode potential and the cor-
rosion potential1. If η≫ba or η≪�bc and, consequently, one of the expo-
nential terms is negligible compared to the other one, then Eq. (1) is
transformed into the anodic and cathodic Tafel equations respectively:

lnj ¼ lnjcorr þ
η

ba
ð2aÞ

ln �jð Þ ¼ lnjcorr �
η

bc
ð2bÞ

Eqs. (2a) and (2b) are linear in the kinetic parameters lnjcorr, 1=ba
and 1=bc and are, therefore, very simply applicable for determining
these parameters. It has to be noted that in practice the Tafel slopes
are frequently replaced by the decadic Tafel slopes ba;10 and bc;10 which
are defined as ba;10 ¼ ba ln10 and bc;10 ¼ bc ln10. With these substitu-
tions, the natural logarithm in Eqs. (2a) and (2b) is replaced with
the 10-based logarithm. However, the conditions of their validity
restrict their application to the range of relatively high polarization
levels where the mechanism of the corrosion process can significantly
differ from that established around the corrosion potential.

The reason of the successful application of Eq. (1) for corrosion sys-
tems in many cases is that the (surface) concentration relations during
anodic and, especially, during cathodic polarization of typical struc-
tural steels in typical aqueous solutions exhibits a less significant vari-
ability and therefore the agreement between the equation and the
measurement data can be much better.

Eq. (1) is found valid for a vast number of corrosion systems with
an adequate precision (at least to the practical requirements of deter-
mining the corrosion rate) and is therefore widely used in the corro-
sion research and industrial practice, in spite of the numerous
difficulties arising in the process of the application. Theoretically,
Eq. (1) cannot be linearized in the form shown here comprising two
exponential terms, and the determination of the parameters requires
a nonlinear parameter fitting procedure if the linearization at higher
polarisation is not applicable (i.e., because the system does not exhibit
a Tafel-like behavior at higher polarization). The practical application
t, but the
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of nonlinear methods has numerous problems and drawbacks, but in
this paper we mention only two of them. First, nonlinear parameter fit-
ting requires good initial values and if it does not succeed to find ade-
quately close initial values then the whole fitting procedure may go
wrong. For the second, in most cases there is a strong correlation
between the parameters. Certainly, if the measurement data were free
from any random error or systematic error caused by the approxima-
tions in the model, then the nonlinear fitting procedure would return
the unbiased, undistorted values of the parameters. However, owing to
the correlations between the parameters, the random and systematic
errors result in the appearance of local minima of the target function
and causes an ambiguity of the determined parameters. These well-
known problems of the nonlinear fitting, along with the required rela-
tively complicated mathematical and software apparatus, leads the sci-
entific and engineering community to the search of linear
transformations, which are more robust in performance and simpler
in application.

Alternatively to Eqs. (2a) and (2b), another plausible linearization
process of Eq. (1) results in the determination of the polarization resis-
tance Rp by means of the serial expansion of the exponential terms and
omitting the second- and higher order members [6,7]:

1
Rp

¼ dj
dη

����
η¼0

¼ jcorr
1
ba

þ 1
bc

� �
: ð3Þ

Note that the signs of ba and bc are equal.
Eq. (3) and the concept of the polarization resistance has a great

practical importance; the industrial application of the LPR (Linear
Polarization Resistance) corrosion monitoring method is an important
and useful tool in assessing fast changes in the corrosion rate which
facilitates identification of factors influencing the corrosion rate. How-
ever, it is much more problematic to assess the absolute rate of corro-
sion by the LPR method because the values of ba and bc are required for
the calculation of the corrosion current. Generally, this problem is han-
dled by substituting the (decadic) Tafel slopes with some frequently
measured, but basically arbitrary values, 100 to 120 mV [8] or 40,
60 or 80 mV for the anodic and 120 mV for the cathodic reaction
[9], or some value above 30 mV [10]. Typically, if ba;10 ¼ 60mV and
bc;10 ¼ 120mV then an acceptable approximation of the different pro-
posals is given. In some cases, one of the processes is strongly diffu-
sion-controlled and the reciprocal Tafel slope becomes negligible
and/or the linearity of the curve can be severely distorted. However,
this method can lead to erroneous corrosion rate figures, as it will
be shown below, owing to the fact that the corrosion rate determina-
tion via the polarization resistance carries an inherent uncertainty.

The accurate and unbiased assessment of the basic corrosion
parameters (jcorr, ba and bc) at or around the corrosion potential
(Ecorr) is of utmost importance. According to Mansfeld [9], “… one
could accurately determine jcorr as a function of time, electrolyte com-
position, temperature, or other parameters. A determination of jcorr,
Ecorr, ba and bc as a function of such parameters2 in a potential range
where no changes in the surface structure3 of the test electrode due to
polarization are to be expected is of additional interest…”. This claim
justifies all efforts to determine these critical parameters from the polar-
ization range as narrow as possible around the corrosion potential.

A frequently applied method to increase the accuracy of the deter-
mination of the corrosion rate, called harmonic analysis, is the modi-
fication of the EIS (Electrochemical Impedance Spectroscopy)
transfer function by means of taking the higher order terms of the
expansion of the exponential expressions in Eq. (1) into account
[11,12]. These procedures lead to the determination of the coefficients
of higher order polynomials arising in the series expansion of the expo-
nential terms in Eq. (1) and, consequently, the Tafel slopes, required
2 2 Notation in this citation is transcripted into the conventions of this paper.
3 3 Italics ours.

2

for the more accurate corrosion current assessment, in the less polar-
ized, i.e. transition potential range, where neither the linear approxi-
mation of the low polarization range nor the linear extrapolation of
the Tafel-slopes in the high polarization range is applicable [13].
The common difficulty with all these methods is that if the anodic
and cathodic Tafel slopes are not exactly equal (and in most cases they
are not) then all powers appear in the series and this causes conver-
gence problems; if too many terms are included then the respective tar-
get function can be overdetermined, if too few members are
considered then the fit may be inadequate.

The possible variations of the electrochemical parameters at higher
levels of polarization and the uncertainties of the calculation of the
corrosion current from the polarization resistance both emphasise
the importance of the transition polarization range. In this paper we
propose a transformation of Eq. (1), linear in the Tafel slopes and quad-
ratic in the polarization, which treats all these problems at a techni-
cally satisfactory level and significantly reduces the required
mathematical apparatus using this transition polarization range.

2. Theoretical discussion

Let us write Eq. (1) decomposing the reciprocal of both Tafel slopes
into a symmetric and an asymmetric component:

j ¼ jcorrexp ηA½ � exp ηS½ � � exp �ηS½ �ð Þ ð4Þ
where ba ¼ 1= Sþ Að Þ and bc ¼ 1= S� Að Þ.

Upon dividing both sides, the following expression is obtained:

j
η
¼ jcorr exp ηA½ � exp ηS½ � � exp �ηS½ �

η
ð5Þ

This division, while facilitates proceeding to well-conditioned
expressions, also limits the applicable polarization range excluding
the η ¼ 0 value and increasing the noise of the data around zero. This
step, i.e. division of the current with the polarization, was carried out
earlier by Guzmán et al. [14]. They continue with a relatively simple
polynomial expansion of Eq. (1), stating that a fourth order polynomial
approximation returns a perfect fit. Here we have to note that any
polynomial (or other) approximation applying more than three param-
eters makes the original three-parameter model of Eq. (1) overdeter-
mined, causing a strong correlation between the parameters. The
work of Mészáros et al. [11] is correct in this respect, but e.g. the
approximation of Slepski et al. [12] uses more than three parameters
in a Taylor expansion. The division with the polarization is applied
by Reeve and Bech-Nielsen [15], too, but they do not proceed with
an expansion of the governing equation.

Starting from Eq. (5), we propose taking the logarithm of both sides
and we get a sum from the product of the right side, rendering the term
related to jcorr and A linear:

ln
j
η
¼ ln jcorr þ ηAþ ln

exp ηS½ � � exp �ηS½ �
η

¼ ln jcorr þ ηAþ ln
2
η

exp ηS½ � � exp �ηS½ �
2

� �

¼ ln jcorr þ ηAþ ln
2
η
sh ηS½ �

� �
ð6Þ

The linearization of the last term is still to be solved. In order to do
this, we notice that the Taylor-series of the sh function is convergent
for ηS < 1j j:

sh ηS½ � ¼ ηSþ ηSð Þ3
3!

þ ηSð Þ5
5!

þ ηSð Þ7
7!

þ � � � ð7Þ

Substituting Eq. (7) into Eq. (6), we obtain:

ln
j
η
¼ ln jcorr þ Aηþ ln 2S 1þ ηSð Þ2

3!
þ ηSð Þ4

5!
þ ηSð Þ6

7!
þ � � �

 ! !
ð8Þ
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Considering that ln 1þ xð Þ ¼ x � x2
2 þ x3

3 � � � �≈x if xj j≪1, this
equation can be transformed into a polynomial of ηS. Assuming a
first-order approximation of the logarithmic function:

ln
j
η
¼ ln 2jcorrSþ Aηþ S2

3!
η2 þ S4

5!
η4 þ S6

7!
η6 þ � � � ð9Þ

It is important to note that according to Eqs. (3) and (4)
ln2jcorrS ¼ ln1=Rp.

Alternatively, considering a second-order approximation of the log-
arithmic function, it is obtained that.

ln
j
η
¼ ln 2jcorrSþ Aηþ S2

3!
η2 þ S4

5!
� S4

2 3!ð Þ2
 !

η4 þ � � �

¼ ln 2jcorrSþ Aηþ S2

3!
η2 � S4

180
η4 þ � � � ð10Þ

If ηSj j < 0:5 then the contribution of the order 4 member in Eq.
(10) is less than 1% of that of the order 2 member and is considered
negligible. It is interesting that the sign of the order 4 member changes
compared to Eq. (9) (this also improves the convergence of the second
order approximation). If a fitting procedure gives a positive value, then
it can be an indication of a systematic (model) error. Omitting the
order 4 term, the expression is linear in parameters ln2jcorrS, A and
S2=3!. It is important to note that in Eq. (10) the higher-order terms
are all even, and they decrease very fast. Consequently, the quadratic
approximation of Eq. (10) is adequate and three parameters, similarly
to Eq. (1), can correctly describe the model. Also, if A ¼ 0, i.e., Eq. (1)
is symmetric in ba and in bc then Eq. (10) can be further simplified by
means of the x ¼ η2 substitution.

Another way of further simplification can be made via the observa-
tion that the constant term ln2jcorrS in Eq. (10) gives the linear polar-
ization resistance Rp. In this way the constant term is eliminated, the
count of parameters to be determined is decreased, also decreasing
the extent of correlations between the coefficients of the polynomial.
The value of the polarization resistance can generally be accurately
assessed (e.g., from a polynomial fit of the current–potential curve
around the corrosion potential). Thus, with the appropriate rearrange-
ment the following dimensionless form is obtained:

ln
j
η
Rp

� �
≈Aηþ S2

3!
η2 ð11Þ

Eq. (11) is probably the simplest approximation of Eq. (1), but is, as
it will be demonstrated below, surprisingly accurate. However, as η is
included in the denominator of the left side, aroundη≈0 the accuracy
and robustness of the function may be significantly worse than at
greater absolute values. Accordingly, a further division of both sides
with η, which would give a linear relationship with the intercept A
and the slope S2=3! and might be very elegant, is impractical. Obvi-
ously, the convergence of Eq. (11) is fast decreasing as ηSj j ! 1, there-
fore such range of ηSj j should be avoided in the application of the
theory.
3. Experimental

In order to prove the validity of Eq. (11) and the considerations
leading to it, we carried out simulations and also verified the applica-
tion on two typical corrosion systems. In the simulations current-
potential curves were generated with no added random error and also
with zero-centred, evenly distributed absolute error of order 0.01 and
0.02, superimposed on the dimensionless left side of Eq. (11) (this cor-
responds to a relative error of the current of 1% and 2% respectively).
A similar range of random error was applied by Shen et al. [16] in their
synthetic data fitting procedure. The simulation parameters are shown
in Table 1.
3

The experimental conditions of the measurements were the same as
published earlier for similar low-carbon steel electrodes [17]. The
working electrode was a DIN St-52 type cylindrical steel electrode of
30 mm length and 6 mm diameter in a Teflon holder, and the geomet-
rical electrode surface was 5.94 cm2. Saturated Ag/AgCl electrode was
used as a reference electrode and a platinum net with an approximate
surface area of 20 cm2 was used as a counter electrode. Electrolyte
compositions are included in Table 2. The reference electrode was
fixed in a Luggin-capillary to provide a well-defined geometry. The
experiments were carried out in a conventional three-electrode elec-
trochemical cell of a volume of approximately 700 cm3. The working
electrodes were polished with #400, #600 and finally #1000 emery
paper and were then degreased in acetone and etched in 10% HCl
for 5 min. EIS measurements were carried out in order to assess the
solution resistance, which was compensated in the potential values
of the polarization experiments. All measurements were carried out
with a METROHM AUTOLAB PGSTAT 302 N type potentiostat using
a NOVA 1.11 type software. All potential figures published below
are compensated with the ohmic potential drop using the measured
current value and the ohmic resistance obtained from the EIS data.
The current-potential characteristics was determined from potentiody-
namic measurements with a sweep rate of 1 mV/s, starting at the cor-
rosion potential with a 200 mV sweep first in the negative and then
with a 100 mV sweep in the positive direction. The points used for
the determination of the polarisation resistance Rp and also the param-
eters jcorr, ba;10 and bc;10 via Eq. (11) were taken from the cathodic-ano-
dic transition range of the curves. The (decadic) Tafel slopes and the
corrosion currents of the polarization curves were also assessed by
the linear fitting of the semilogarithmic representation of the measure-
ment data; the Tafel slope values were determined from the apparently
best-fit sections of the respective curves at higher polarizations. The
polarisation resistance was assessed from an order 3 polynomial fitting
in the subject potential range (-25 mV … + 25 mV). These data are
published in the tables and figures below for a direct comparison of
the conventionally obtained data with the ones received via Eq.
(11). All calculations were carried out with Excel, demonstrating the
simplicity and easy applicability of the proposed procedures.
4. Results and discussion

The results of the simulation experiments are shown in Figs. 1 and
2, the parameters are summarized in Table 3. In Fig. 1 and in Fig. 2 the
symmetric S1 and asymmetric S2 simulation data sets are shown,
respectively, and the polynomial fits. In case of the S3 (simulated)
and E1, E2 (experimental) systems only the transition range (i.e. tran-
sition from linear to semilogarithmic) was fitted and the central poten-
tial range between −10 mV … + 10 mV was omitted. The advantage
of the applied transition potential range is that it is relatively close to
the corrosion potential and the electrochemical parameters are pre-
sumably not changed significantly with this minor polarization.
Although according to Eq. (11) the constant term of the quadratic
model function is negligible, in the fitting procedure also this param-
eter is calculated, resulting in extremely low values both for the S1
and the S2 data series.

In Figs. 1 and 2 the apparent extent of the deviations seems to be
very different but in fact the deviations are of the same size; the range
of the data is different in the two figures. The obtained parameters,
shown in Table 3, are fairly accurate in the S1 and S2 series. In the Ser-
ies S3 extremely large errors are superimposed on the theoretical curve
and, still, the deviation of the parameters from the theoretical ones dif-
fers only a few percent. In conclusion, it can be stated that the applied
transformation of Eq. (1), linear in the parameters and quadratic in the
polarization, can be fitted in a robust way even in case of relatively
large random errors. Consequently, if a kinetic system obeys Eq. (1)
then it can be fitted properly with Eq. (11) and, vice versa, if it can



Table 1
Simulation parameters according to Eq. (1).

System ID Corrosion current* (jcorr) Anodic decadic Tafel slope/mV (ba;10) Cathodic decadic Tafel slope/mV (bc;10) Superimposed absolute error**

S1-0 1.0 120 120 0
S1-1% 0.01
S1-2% 0.02
S2-0 1.0 60 120 0
S2-1% 0.01
S2-2% 0.02
S3-1%-5%*** 1.0 60 120 0.01

* Arbitrary unit.
** Centralized, even distribution, added to the current values on the left side of Eq. (11).

*** 1% absolute error added to the current on the left side of Eq. (11) plus 5% centralized, even distribution error of the corrosion current added to the current
values.

Table 2
System identification and solution composition of the experimentally tested
systems.

System ID Solution composition

E1 1% HCl
E2 5% NaCl + 0.5% Acetic acid

Fig. 1. Symmetric polarization data simulations according to Table 1 and
Table 3.

Fig. 2. Asymmetric polarization data simulations according to Table 1 and
Table 3.
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be fitted with Eq. (11) then it is likely to follow the kinetics formulated
in Eq. (1). This conclusion will be strongly exploited in the following
evaluation of the measured polarization curves.

The semilogarithmic potentiodynamic curves are shown in Figs. 3
and 4 for the systems E1 and E2 respectively, and the assessed param-
eters are summarized in Table 4. The potential range applied in the
quadratic fitting is also marked in the figures. The transformed (quad-
ratic) representations, according to Eq. (11), are shown in Fig. 5. The
linear potentiodynamic curves, assessed in the same potential range as
the transformed ones (-25 mV… + 25 mV), are included in Fig. 6.

The semilogarithmic polarization curves in Fig. 3 display a quite
ordinary electrochemical behaviour of a typical corrosion system. Both
the cathodic and the anodic curves have typical linear sections at
higher levels of polarization, which intersect at the corrosion potential,
determining the corrosion current in a fairly accurate way. The anodic
4

and cathodic Tafel slopes are 63.4 and 85.3 mV respectively. The cor-
responding quadratic fitting is included in Fig. 5. The fitting is fairly
good and leaves no doubt that the quadratic model function is realistic,
in agreement with the regular ‘double exponent’ behaviour repre-
sented in Eq. (1). It is appearing that this transition potential range
is just that intermediate one which cannot be used either for the con-
ventional linear fitting of the polarization resistance or for the semilog-
arithmic Tafel fit in the higher polarization range. The choice of the
range might be critical; it must be wide enough to allow the contribu-
tion of the second-order term to the overall variance, on the one hand,
and narrow enough to avoid the divergence over ηSj j≥1 on the other
hand. The holding this second condition is not trivial; while the range
of η must be decided before the evaluation, the fulfilment of the con-
dition can be checked after the evaluation only, thus an iterative
approach may be required.

The results obtained on the experimental system E2 are fairly dif-
ferent. The semilogarithmic presentation in Fig. 4 reveals that the ano-
dic and the cathodic polarization curves do not intersect on the
corrosion potential and, consequently, provide significantly different
values of corrosion current. This anomaly is observed frequently in
practice (e.g. [18,19]) and is very critical in itself, because makes
the determination of the corrosion current (and the corrosion rate)
inaccurate (the ratio of the cathodic and anodic corrosion current is



Table 3

Table 3A. Polynomial coefficients fitted to simulation data sets via Eq. (11).

System ID Constant term* A=mV�1 S2=3!/mV�2 Correlation coefficient R2

S1-0 1.952E-4 −2.97E-19 6.09E-05 1.000
S1-1% 1.92E-4 4.71E-5 6.35E-5 0.9587
S1-2% 1.81E-4 9.37E-05 6.61E-05 0.8648
S2-0 1.44E-3 9.59E-03 1.36E-04 1.000
S2-1% 1.34E-03 9.64E-03 1.39E-04 0.9997
S2-2% 1.41E-3 9.69E-03 1.41E-04 0.9988
S3-1%-5% 6.66E-3 9.76E-3 1.28E-3 0.9728

Table 3B. Transformed electrochemical parameters of simulation data.
System ID Corrosion current (jcorr) Anodic decadic Tafel Slope/mV (ba;10) Cathodic decadic Tafel Slope/mV (bc;10) S=mV�1

S1-0 1.003 120.41 120.41 0.0191
S1-1% 0.982 117.67 118.24 0.0195
S1-2% 0.964 115.12 116.21 0.0199
S2-0 1.006 60.34 121.38 0.0286
S2-1% 1.001 59.85 119.98 0.0288
S2-2% 0.9879 59.37 118.64 0.0291
S3-1%-5% 1.02 61.41 128.12 0.0277

* Not included explicitly in Eq. (11), but fitted with full quadratic polynomials, including the constant term, too.

Fig. 3. System E1 semilogarithmic potentiodynamic polarization curves (left
side vertical axis) with the linear fits of the Tafel sections of the curves and
with the corrosion current values as the intercepts of the fitted lines. See also
the linear current-potential curve (right axis) and the range of points used for
the calculation via Eq. (11) (purple points). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. System E2 semilogarithmic potentiodynamic polarization curves (left
side vertical axis) with the linear fits of the Tafel sections of the curves and
with the corrosion current values as the intercepts of the fitted lines. See also
the linear current-potential curve (right axis) and the range of points used for
the calculation via Eq. (11) (purple points). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 4
Summary of parameters obtained in the experimental systems E1 and E2.

Property System E1 value System E2 value Reference

ba;10/mV 63.4 45.2 Figs. 3 and 4
ba;10/mV 76.7 58.1 Fig. 5 and Eq. (11)
bc;10/mV 85.3 159.9 Figs. 3 and 4
bc;10/mV 92.1 87.4 Fig. 5 and Eq. (11)

log10
jcorr

μA=cm2

� �
1.572 1.493 Fig. 6 and Eq. (11)*

Anodic log10
jcorr

μA=cm2

� �
1.435 1.171 Figs. 3 and 4

Cathodic

log10
jcorr

μA=cm2

� � 1.439 1.686 Figs. 3 and 4

* Using the value of S obtained from the fitting of Eq. (11) and the value of
RP obtained from the fitting of current vs. potential data of Fig. 6.
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3.27, which adds an intolerably high uncertainty to the corrosion rate
determination). This large difference is presumably related to the sim-
ilarly large difference in the Tafel slopes (45.2 mV and 155.9 mV for
the anodic and the cathodic process, respectively), which are also
unusually low and high values. The Tafel slopes obtained from the
quadratic fitting (58.1 and 87.4 mV) are significantly closer to each
other and to the values obtained in the rather similar experimental sys-
tem E1. Not surprisingly after all, the logarithm of the corrosion cur-
rent obtained from the RP value assessed from the linear polarization
curve (see Fig. 6) and the S value from the quadratic fitting is between
the anodic and the cathodic values, namely 1.493. With all these
strange features, observing the shape of this polarization curve (E2,
red curve), one might think it to be a quite ordinary one, very much
resembling to the other one which, as it was discussed above, shows
quite ordinary electrochemical behavior. And this case shows the real
5



Fig. 5. Experimental measured curves (triangles) and quadratic fittings (lines)
of the E1 and E2 systems.

Fig. 6. Current vs. polarization curves in the experimental systems with order
3 polynomial fittings.
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practical significance of the quadratic fit; while in the conventional
corrosion current assessment methods the values of the Tafel slopes,
assessable only from the high-polarization range, are necessary for
the accurate calculation of the corrosion current both via the polariza-
tion resistance and also via the Tafel extrapolation, the quadratic fit
uses only a relatively narrow polarization range (in this
case ± 25 mV) for getting the same parameters. Considering that dur-
ing extensive polarisation the surface conditions can change signifi-
cantly and the Tafel slopes obtained from these potential ranges do
not necessarily agree with the energetics of the reactions around the
corrosion potential, the accuracy of the corrosion current obtained
from the quadratic fit may be much better. The abnormal behavior
6

of E2 is also indicated by the offset in Fig. 5 (the curve does not pass
through the origin of the coordinate system). Irrespective of this con-
clusion, it is important to note that the measurement data curve of sys-
tem E2 is not that typical parabolic shape as the one of E1; both the
negative and the positive parts seem to be rather linear sections than
parts of a parabola. In spite of this slight but observable destruction
of the shape, the correlation coefficient R2 of the system E2 is some-
what better than that of the system E1. This phenomenon needs fur-
ther investigation in other corrosion systems in order to get a more
general and more reliable picture on the applicability of the quadratic
fit as a method for the assessment of the corrosion current and other
electrochemical parameters. However, the inconsistencies in the eval-
uation of system E2 may also point to the fact that the Butler-Volmer
equation does not describe the kinetics of the system accurately for
this system. Consequently, the quadratic fit can be a method to quan-
tify the deviations from the Butler-Volmer equation in the narrower
range around the corrosion potential.
5. Conclusions

A transformation, linear in the parameters and quadratic in the
polarization (overvoltage), was proposed for the determination of
the Tafel slopes and, finally, the corrosion (exchange) current of sys-
tems obeying the Butler-Volmer equation. The theoretical considera-
tions lead to the conclusion that in case of a perfect agreement with
the Butler-Volmer equation the constant term of the resultant quadra-
tic relationship (Eq. (11)) is zero. The performance of the transforma-
tion was tested on simulated data series with preset levels of random
error and also on two experimental corrosion systems. The method uti-
lizes the transition potential range around the corrosion potential that
exceeds the linear range used for the assessment of the polarisation
resistance but does not reach out to the range applicable for the deter-
mination of Tafel slopes from the semilogarithmic transformation of
the current vs. potential relationship. The simulated data fittings
showed that the method returned the electrochemical parameters with
minor errors, roughly proportional to the data error levels. The fittings
on experimental system polarization data revealed that if the system
showed a regular Butler-Volmer behavior at high polarization levels
then the subject transformation also returned regularly the quadratic
dependence of the model function on the polarization, with a negligi-
ble constant term. Further research is required to investigate the cor-
respondence between the anomalies of the Tafel slopes (giving
different extrapolated values for the anodic and the cathodic slope)
and the anomalies of the quadratic fit. The method provides an alter-
native way to determine the corrosion current and the corrosion rate,
from a narrower range than the Tafel slope extrapolations and without
the ambiguity of the conventional polarization resistance method. It
seems that the proposed transformation is applicable for studying
the kinetics of electrochemical systems in the transition range which
was hitherto mostly unusable for such purposes.
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